Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 166(5): 809-829, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37530081

RESUMO

Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone). Accumulating evidence suggests that viruses disrupt NSC function in adulthood and infancy, but the in vivo impact of childhood infections on acute and long-term NSC function is unknown. Using a juvenile mouse model of measles virus (MeV) infection, where only mature neurons in the brain are infected, we defined the effects of the antiviral immune response on NSCs from juvenile to adult stages of life. We found that (a) virus persists in the brains of survivors despite an anti-viral immune response; (b) NSC numbers decrease dramatically during early infection, but ultimately stabilize in adult survivors; (c) infection is associated with mild apoptosis throughout the juvenile brain, but NSC proliferation is unchanged; (d) the loss of NSC numbers is dependent upon the stage of NSC differentiation; and (e) immature neurons increase early during infection, concurrent with depletion of NSC pools. Collectively, we show that NSCs are exquisitely sensitive to the inflammatory microenvironment created during neuron-restricted MeV infection in juveniles, responding with an early loss of NSCs but increased neurogenesis. These studies provide insight into potential cellular mechanisms associated with long-term neurological deficits in survivors of childhood CNS infections.


Assuntos
Células-Tronco Neurais , Vírus , Camundongos , Animais , Neurônios , Encéfalo , Diferenciação Celular , Neurogênese
2.
Brain Behav Immun ; 114: 61-77, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37516388

RESUMO

Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.

3.
AAPS J ; 24(1): 8, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873640

RESUMO

Lipidoid nanoparticles (LNPs) are the delivery platform in Onpattro, the first FDA-approved siRNA drug. LNPs are also the carriers in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While these applications have demonstrated that LNPs effectively deliver nucleic acids to hepatic and muscle cells, it is unclear if LNPs could be used for delivery of siRNA to neural cells, which are notoriously challenging delivery targets. Therefore, the purpose of this study was to determine if LNPs could efficiently deliver siRNA to neurons. Because of their potential delivery utility in either applications for the central nervous system and the peripheral nervous system, we used both cortical neurons and sensory neurons. We prepared siRNA-LNPs using C12-200, a benchmark ionizable cationic lipidoid along with helper lipids. We demonstrated using dynamic light scattering that the inclusion of both siRNA and PEG-lipid provided a stabilizing effect to the LNP particle diameters and polydispersity indices by minimizing aggregation. We found that siRNA-LNPs were safely tolerated by primary dorsal root ganglion neurons. Flow cytometry analysis revealed that Cy5 siRNA delivered via LNPs into rat primary cortical neurons showed uptake levels similar to Lipofectamine RNAiMAX-the gold standard commercial transfection agent. However, LNPs demonstrated a superior safety profile, whereas the Lipofectamine-mediated uptake was concomitant with significant toxicity. Fluorescence microscopy demonstrated a time-dependent increase in the uptake of LNP-delivered Cy5 siRNA in a human cortical neuron cell line. Overall, our results suggest that LNPs are a viable platform that can be optimized for delivery of therapeutic siRNAs to neural cells.


Assuntos
Gânglios Espinais/metabolismo , Lipídeos/química , Nanopartículas , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Transfecção , Animais , Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Gânglios Espinais/citologia , Humanos , Células MCF-7 , Microscopia de Fluorescência , Nanotecnologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Fatores de Tempo
4.
J Control Release ; 338: 505-526, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450196

RESUMO

We have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures. Gene ontology and pathway enrichment analysis of EVs revealed a very high association to glycolysis-related processes. In comparison to heterotypic macrophage-derived EVs, BEC-derived EVs demonstrated a greater selectivity to transfer mitochondria and increase endothelial cell survival under ischemic conditions.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Animais , Encéfalo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Mitocôndrias
5.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452333

RESUMO

Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.


Assuntos
Doenças do Sistema Nervoso Central/virologia , Células-Tronco Neurais/virologia , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/imunologia , Citocinas/genética , Citocinas/imunologia , Humanos , Células-Tronco Neurais/imunologia , Vírus/genética
6.
Dev Neurobiol ; 80(7-8): 213-228, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32866337

RESUMO

Viral infections of the central nervous system (CNS) often cause disease in an age-dependent manner, with greater neuropathology during the fetal and neonatal periods. Transgenic CD46+ mice model these age-dependent outcomes through a measles virus infection of CNS neurons. Adult CD46+ mice control viral spread and survive the infection in an interferon gamma (IFNγ)-dependent manner, whereas neonatal CD46+ mice succumb despite similar IFNγ expression in the brain. Thus, we hypothesized that IFNγ signaling in the adult brain may be more robust, potentially due to greater basal expression of IFNγ signaling proteins. To test this hypothesis, we evaluated the expression of canonical IFNγ signaling proteins in the neonatal and adult brain, including the IFNγ receptor, Janus kinase (JAK) 1/2, and signal transducer and activator of transcription-1 (STAT1) in the absence of infection. We also analyzed the expression and activation of STAT1 and IFNγ-stimulated genes during MV infection. We found that neonatal brains have equivalent or greater JAK/STAT1 expression in the hippocampus and the cerebellum than adults. IFNγ receptor expression varied by cell type in the brain but was widely expressed on neuronal and glial cells. During MV infection, increased STAT1 expression and activation correlated with viral load in the hippocampus regardless of age, but not in the cerebellum where viral load was consistently undetectable in adults. These results suggest the neonatal brain is capable of initiating IFNγ signaling during a viral infection, but that downstream STAT1 activation is insufficient to limit viral spread.


Assuntos
Encéfalo/metabolismo , Encéfalo/virologia , Interferon gama/metabolismo , Sarampo/metabolismo , Transdução de Sinais/fisiologia , Carga Viral/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/imunologia , Chlorocebus aethiops , Feminino , Interferon gama/imunologia , Masculino , Sarampo/imunologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...